Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
J Virol ; 97(6): e0028623, 2023 Jun 29.
Article in English | MEDLINE | ID: covidwho-2315599

ABSTRACT

We identified neutralizing monoclonal antibodies against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) variants (including Omicron variants BA.5 and BA.2.75) from individuals who received two doses of mRNA vaccination after they had been infected with the D614G virus. We named them MO1, MO2, and MO3. Among them, MO1 showed particularly high neutralizing activity against authentic variants: D614G, Delta, BA.1, BA.1.1, BA.2, BA.2.75, and BA.5. Furthermore, MO1 suppressed BA.5 infection in hamsters. A structural analysis revealed that MO1 binds to the conserved epitope of seven variants, including Omicron variants BA.5 and BA.2.75, in the receptor-binding domain of the spike protein. MO1 targets an epitope conserved among Omicron variants BA.1, BA.2, and BA.5 in a unique binding mode. Our findings confirm that D614G-derived vaccination can induce neutralizing antibodies that recognize the epitopes conserved among the SARS-CoV-2 variants. IMPORTANCE Omicron variants of SARS-CoV-2 acquired escape ability from host immunity and authorized antibody therapeutics and thereby have been spreading worldwide. We reported that patients infected with an early SARS-CoV-2 variant, D614G, and who received subsequent two-dose mRNA vaccination have high neutralizing antibody titer against Omicron lineages. It was speculated that the patients have neutralizing antibodies broadly effective against SARS-CoV-2 variants by targeting common epitopes. Here, we explored human monoclonal antibodies from B cells of the patients. One of the monoclonal antibodies, named MO1, showed high potency against broad SARS-CoV-2 variants including BA.2.75 and BA.5 variants. The results prove that monoclonal antibodies that have common neutralizing epitopes among several Omicrons were produced in patients infected with D614G and who received mRNA vaccination.


Subject(s)
Antibodies, Monoclonal , COVID-19 , Animals , Cricetinae , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , Antibodies, Neutralizing , Epitopes/genetics , RNA, Messenger , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
2.
Int J Biol Macromol ; 226: 885-899, 2023 Jan 31.
Article in English | MEDLINE | ID: covidwho-2310578

ABSTRACT

Despite the availability of prevention and treatment strategies and advancing immunization approaches, the influenza virus remains a global threat that continues to plague humanity with unpredictable pandemics. Due to the unusual genetic variability and segmented genome, the reassortment between different strains of influenza is facilitated and the viruses continuously evolve and adapt to the host cell's immunity. This underlies the seasonal vaccine mismatches that decrease the vaccine efficacy and increase the risk of outbreaks. Thus, the development of a universal vaccine covering all the influenza A and B strains would reduce the pervasiveness of the influenza virus. In the current study, a potentially universal influenza multi-epitope vaccine was designed based on the experimentally tested conserved T cell and B cell epitopes of hemagglutinin (HA), neuraminidase (NA), nucleoprotein (NP), and matrix-2 proton channel (M2) of the virus. The immune simulation and molecular docking of the vaccine construct with TLR2, TLR3, and TLR4 elicited the favorable immunogenicity of the vaccine and the formation of stable complexes, respectively. Ultimately, based on the immunoinformatics analysis, the universal mRNA multi-epitope vaccine designed in this study might have a protection potential against the various subtypes of influenza A and B.


Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Epitopes/genetics , Pandemics/prevention & control , Molecular Docking Simulation , Antibodies, Viral
3.
Funct Integr Genomics ; 23(2): 107, 2023 Mar 29.
Article in English | MEDLINE | ID: covidwho-2307860

ABSTRACT

Helicobacter pylori is a leading cause of stomach cancer and peptic ulcers. Thus, identifying epitopes in H. pylori antigens is important for disease etiology, immunological surveillance, enhancing early detection tests, and developing optimal epitope-based vaccines. We used immunoinformatic and computational methods to create a potential CagW epitope candidate for H. pylori protection. The cagW gene of H. pylori was amplified and cloned into pcDNA3.1 (+) for injection into the muscles of healthy BALB/c mice to assess the impact of the DNA vaccine on interleukin levels. The results will be compared to a control group of mice that received PBS or cagW-pcDNA3.1 (+) vaccinations. An analysis of CagW protein antigens revealed 8 CTL and 7 HTL epitopes linked with AYY and GPGPG, which were enhanced by adding B-defensins to the N-terminus. The vaccine's immunogenicity, allergenicity, and physiochemistry were validated, and its strong activation of TLRs (1, 2, 3, 4, and 10) suggests it is antigenic. An in-silico cloning and immune response model confirmed the vaccine's expression efficiency and predicted its impact on the immune system. An immunofluorescence experiment showed stable and bioactive cagW gene expression in HDF cells after cloning the whole genome into pcDNA3.1 (+). In vivo vaccination showed that pcDNA3.1 (+)-cagW-immunized mice had stronger immune responses and a longer plasmid DNA release window than control-plasmid-immunized mice. After that, bioinformatics methods predicted, developed, and validated the three-dimensional structure. Many online services docked it with Toll-like receptors. The vaccine was refined using allergenicity, antigenicity, solubility, physicochemical properties, and molecular docking scores. Virtual-reality immune system simulations showed an impressive reaction. Codon optimization and in-silico cloning produced E. coli-expressed vaccines. This study suggests a CagW epitopes-protected H. pylori infection. These studies show that the proposed immunization may elicit particular immune responses against H. pylori, but laboratory confirmation is needed to verify its safety and immunogenicity.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Vaccines , Animals , Mice , Helicobacter pylori/genetics , Immunodominant Epitopes , Helicobacter Infections/prevention & control , Molecular Docking Simulation , Escherichia coli , Epitopes/genetics
4.
Proteins ; 91(8): 1021-1031, 2023 08.
Article in English | MEDLINE | ID: covidwho-2264973

ABSTRACT

The rapid adaptation of SARS-CoV-2 within the host species and the increased viral transmission triggered the evolution of different SARS-CoV-2 variants. Though numerous monoclonal antibodies (mAbs) have been identified as prophylactic therapy for SARS-CoV-2, the ongoing surge in the number of SARS-CoV-2 infections shows the importance of understanding the mutations in the spike and developing novel vaccine strategies to target all variants. Here, we report the map of experimentally validated 74 SARS-CoV-2 neutralizing mAb binding epitopes of all variants. The majority (87.84%) of the potent neutralizing epitopes are localized to the receptor-binding domain (RBD) and overlap with each other, whereas limited (12.16%) epitopes are found in the N-terminal domain (NTD). Notably, 69 out of 74 mAb targets have at least one mutation at the epitope sites. The potent epitopes found in the RBD show higher mutations (4-10aa) compared to lower or modest neutralizing antibodies, suggesting that these epitopes might co-evolve with the immune pressure. The current study shows the importance of determining the critical mutations at the antibody recognition epitopes, leading to the development of broadly reactive immunogens targeting multiple SARS-CoV-2 variants. Further, vaccines inducing both humoral and cell-mediated immune responses might prevent the escape of SARS-CoV-2 variants from neutralizing antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Epitopes/genetics , Antibodies, Neutralizing , COVID-19/prevention & control , Antibodies, Monoclonal/genetics , Antibodies, Viral
5.
Viruses ; 15(1)2023 Jan 13.
Article in English | MEDLINE | ID: covidwho-2200881

ABSTRACT

COVID-19 cases caused by new variants of highly mutable SARS-CoV-2 continue to be identified worldwide. Effective control of the spread of new variants can be achieved through targeting of conserved viral epitopes. In this regard, the SARS-CoV-2 nucleocapsid (N) protein, which is much more conserved than the evolutionarily influenced spike protein (S), is a suitable antigen. The recombinant N protein can be considered not only as a screening antigen but also as a basis for the development of next-generation COVID-19 vaccines, but little is known about induction of antibodies against the N protein via different SARS-CoV-2 variants. In addition, it is important to understand how antibodies produced against the antigen of one variant can react with the N proteins of other variants. Here, we used recombinant N proteins from five SARS-CoV-2 strains to investigate their immunogenicity and antigenicity in a mouse model and to obtain and characterize a panel of hybridoma-derived monoclonal anti-N antibodies. We also analyzed the variable epitopes of the N protein that are potentially involved in differential recognition of antiviral antibodies. These results will further deepen our knowledge of the cross-reactivity of the humoral immune response in COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Mice , Animals , Humans , Nucleocapsid Proteins/genetics , COVID-19/prevention & control , COVID-19 Vaccines , Nucleocapsid/metabolism , Epitopes/genetics , Recombinant Proteins/genetics , Antibodies, Viral , Spike Glycoprotein, Coronavirus
6.
Vaccine ; 41(5): 1108-1118, 2023 01 27.
Article in English | MEDLINE | ID: covidwho-2165932

ABSTRACT

There is a continued need for sarbecovirus vaccines that can be manufactured and distributed in low- and middle-income countries (LMICs). Subunit protein vaccines are manufactured at large scales at low costs, have less stringent temperature requirements for distribution in LMICs, and several candidates have shown protection against SARS-CoV-2. We previously reported an engineered variant of the SARS-CoV-2 Spike protein receptor binding domain antigen (RBD-L452K-F490W; RBD-J) with enhanced manufacturability and immunogenicity compared to the ancestral RBD. Here, we report a second-generation engineered RBD antigen (RBD-J6) with two additional mutations to a hydrophobic cryptic epitope in the RBD core, S383D and L518D, that further improved expression titers and biophysical stability. RBD-J6 retained binding affinity to human convalescent sera and to all tested neutralizing antibodies except antibodies that target the class IV epitope on the RBD core. K18-hACE2 transgenic mice immunized with three doses of a Beta variant of RBD-J6 displayed on a virus-like particle (VLP) generated neutralizing antibodies (nAb) to nine SARS-CoV-2 variants of concern at similar levels as two doses of Comirnaty. The vaccinated mice were also protected from challenge with Alpha or Beta SARS-CoV-2. This engineered antigen could be useful for modular RBD-based subunit vaccines to enhance manufacturability and global access, or for further development of variant-specific or broadly acting booster vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , Mice , Epitopes/genetics , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19 Serotherapy , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing , Antibodies, Viral , Mice, Transgenic
7.
Nat Commun ; 13(1): 7733, 2022 12 14.
Article in English | MEDLINE | ID: covidwho-2160214

ABSTRACT

An important consequence of infection with a SARS-CoV-2 variant is protective humoral immunity against other variants. However, the basis for such cross-protection at the molecular level is incompletely understood. Here, we characterized the repertoire and epitope specificity of antibodies elicited by infection with the Beta, Gamma and WA1 ancestral variants and assessed their cross-reactivity to these and the more recent Delta and Omicron variants. We developed a method to obtain immunoglobulin sequences with concurrent rapid production and functional assessment of monoclonal antibodies from hundreds of single B cells sorted by flow cytometry. Infection with any variant elicited similar cross-binding antibody responses exhibiting a conserved hierarchy of epitope immunodominance. Furthermore, convergent V gene usage and similar public B cell clones were elicited regardless of infecting variant. These convergent responses despite antigenic variation may account for the continued efficacy of vaccines based on a single ancestral variant.


Subject(s)
COVID-19 , Immunoglobulin Variable Region , Humans , Epitopes/genetics , SARS-CoV-2/genetics , Clone Cells , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
8.
Nat Microbiol ; 7(10): 1635-1649, 2022 10.
Article in English | MEDLINE | ID: covidwho-2050394

ABSTRACT

Population antibody response is thought to be important in selection of virus variants. We report that SARS-CoV-2 infection elicits a population immune response that is mediated by a lineage of VH1-69 germline antibodies. A representative antibody R1-32 from this lineage was isolated. By cryo-EM, we show that it targets a semi-cryptic epitope in the spike receptor-binding domain. Binding to this non-ACE2 competing epitope results in spike destruction, thereby inhibiting virus entry. On the basis of epitope location, neutralization mechanism and analysis of antibody binding to spike variants, we propose that recurrent substitutions at 452 and 490 are associated with immune evasion of the identified population antibody response. These substitutions, including L452R (present in the Delta variant), disrupt interactions mediated by the VH1-69-specific hydrophobic HCDR2 to impair antibody-antigen association, enabling variants to escape. The first Omicron variants were sensitive to antibody R1-32 but subvariants that harbour L452R quickly emerged and spread. Our results provide insights into how SARS-CoV-2 variants emerge and evade host immune responses.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Antibody Formation , Epitopes/genetics , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
9.
Viruses ; 14(8)2022 08 19.
Article in English | MEDLINE | ID: covidwho-2024294

ABSTRACT

Viruses can evolve to respond to immune pressures conferred by specific antibodies generated after vaccination and/or infection. In this study, an in vitro system was developed to investigate the impact of serum-neutralising antibodies upon the evolution of a foot-and-mouth disease virus (FMDV) isolate. The presence of sub-neutralising dilutions of specific antisera delayed the onset of virus-induced cytopathic effect (CPE) by up to 44 h compared to the untreated control cultures. Continued virus passage with sub-neutralising dilutions of these sera resulted in a decrease in time to complete CPE, suggesting that FMDV in these cultures adapted to escape immune pressure. These phenotypic changes were associated with three separate consensus-level non-synonymous mutations that accrued in the viral RNA-encoding amino acids at positions VP266, VP280 and VP1155, corresponding to known epitope sites. High-throughput sequencing also identified further nucleotide substitutions within the regions encoding the leader (Lpro), VP4, VP2 and VP3 proteins. While association of the later mutations with the adaptation to immune pressure must be further verified, these results highlight the multiple routes by which FMDV populations can escape neutralising antibodies and support the application of a simple in vitro approach to assess the impact of the humoral immune system on the evolution of FMDV and potentially other viruses.


Subject(s)
Foot-and-Mouth Disease Virus , Animals , Antibodies, Neutralizing , Antibodies, Viral , Capsid Proteins/genetics , Epitopes/genetics
10.
Curr Microbiol ; 79(10): 306, 2022 Sep 05.
Article in English | MEDLINE | ID: covidwho-2007134

ABSTRACT

The emergence of COVID19 pandemic caused by SARS-CoV-2 virus has created a global public health and socio-economic crisis. Immunoinformatics-based approaches to investigate the potential antigens is the fastest way to move towards a multiepitope-based vaccine development. This review encompasses the underlying mechanisms of pathogenesis, innate and adaptive immune signaling along with evasion pathways of SARS-CoV-2. Furthermore, it compiles the promiscuous peptides from in silico studies which are subjected to prediction of cytokine milieu using web-based servers. Out of the 434 peptides retrieved from all studies, we have identified 33 most promising T cell vaccine candidates. This review presents a list of the most potential epitopes from several proteins of the virus based on their immunogenicity, homology, conservancy and population coverage studies. These epitopes can form a basis of second generation of vaccine development as the first generation vaccines in various stages of trials mostly focus only on Spike protein. We therefore, propose them as most potential candidates which can be taken up immediately for confirmation by experimental studies.


Subject(s)
COVID-19 , Viral Vaccines , COVID-19/prevention & control , Epitopes/genetics , Humans , Immunotherapy , Peptides , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Vaccine Development
11.
Cell ; 185(19): 3603-3616.e13, 2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-2003917

ABSTRACT

The effects of mutations in continuously emerging variants of SARS-CoV-2 are a major concern for the performance of rapid antigen tests. To evaluate the impact of mutations on 17 antibodies used in 11 commercially available antigen tests with emergency use authorization, we measured antibody binding for all possible Nucleocapsid point mutations using a mammalian surface-display platform and deep mutational scanning. The results provide a complete map of the antibodies' epitopes and their susceptibility to mutational escape. Our data predict no vulnerabilities for detection of mutations found in variants of concern. We confirm this using the commercial tests and sequence-confirmed COVID-19 patient samples. The antibody escape mutational profiles generated here serve as a valuable resource for predicting the performance of rapid antigen tests against past, current, as well as any possible future variants of SARS-CoV-2, establishing the direct clinical and public health utility of our system.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Epitopes/genetics , Humans , Mammals , Mutation , Nucleocapsid , SARS-CoV-2/genetics
12.
Nat Commun ; 13(1): 4696, 2022 08 18.
Article in English | MEDLINE | ID: covidwho-1991586

ABSTRACT

Mutations in the spike glycoproteins of SARS-CoV-2 variants of concern have independently been shown to enhance aspects of spike protein fitness. Here, we describe an antibody fragment (VH ab6) that neutralizes all major variants including the recently emerged BA.1 and BA.2 Omicron subvariants, with a unique mode of binding revealed by cryo-EM studies. Further, we provide a comparative analysis of the mutational effects within previously emerged variant spikes and identify the structural role of mutations within the NTD and RBD in evading antibody neutralization. Our analysis shows that the highly mutated Gamma N-terminal domain exhibits considerable structural rearrangements, partially explaining its decreased neutralization by convalescent sera. Our results provide mechanistic insights into the structural, functional, and antigenic consequences of SARS-CoV-2 spike mutations and highlight a spike protein vulnerability that may be exploited to achieve broad protection against circulating variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Epitopes/genetics , Humans , Immunization, Passive , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Serotherapy
13.
Commun Biol ; 5(1): 766, 2022 07 29.
Article in English | MEDLINE | ID: covidwho-1967631

ABSTRACT

Studying the antibody response to SARS-CoV-2 informs on how the human immune system can respond to antigenic variants as well as other SARS-related viruses. Here, we structurally identified a YYDRxG motif encoded by IGHD3-22 in CDR H3 that facilitates antibody targeting to a functionally conserved epitope on the SARS-CoV-2 receptor binding domain. A computational search for a YYDRxG pattern in publicly available sequences uncovered 100 such antibodies, many of which can neutralize SARS-CoV-2 variants and SARS-CoV. Thus, the YYDRxG motif represents a common convergent solution for the human humoral immune system to target sarbecoviruses including the Omicron variant. These findings suggest an epitope-targeting strategy to identify potent and broadly neutralizing antibodies for design of pan-sarbecovirus vaccines and antibody therapeutics.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Epitopes/genetics , Humans , Membrane Glycoproteins/metabolism , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/metabolism
14.
J Virol ; 96(15): e0055822, 2022 08 10.
Article in English | MEDLINE | ID: covidwho-1962090

ABSTRACT

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, several variants of concern (VOCs) have arisen which are defined by multiple mutations in their spike proteins. These VOCs have shown variable escape from antibody responses and have been shown to trigger qualitatively different antibody responses during infection. By studying plasma from individuals infected with either the original D614G, Beta, or Delta variants, we showed that the Beta and Delta variants elicit antibody responses that are overall more cross-reactive than those triggered by D614G. Patterns of cross-reactivity varied, and the Beta and Delta variants did not elicit cross-reactive responses to each other. However, Beta-elicited plasma was highly cross-reactive against Delta Plus (Delta+), which differs from Delta by a single K417N mutation in the receptor binding domain, suggesting that the plasma response targets the N417 residue. To probe this further, we isolated monoclonal antibodies from a Beta-infected individual with plasma responses against Beta, Delta+, and Omicron, which all possess the N417 residue. We isolated an N417-dependent antibody, 084-7D, which showed similar neutralization breadth to the plasma. The 084-7D MAb utilized the IGHV3-23*01 germ line gene and had somatic hypermutations similar to those of previously described public antibodies which target the 417 residue. Thus, we have identified a novel antibody which targets a shared epitope found on three distinct VOCs, enabling their cross-neutralization. Understanding antibodies targeting escape mutations, such as K417N, which repeatedly emerge through convergent evolution in SARS-CoV-2 variants, may aid in the development of next-generation antibody therapeutics and vaccines. IMPORTANCE The evolution of SARS-CoV-2 has resulted in variants of concern (VOCs) with distinct spike mutations conferring various immune escape profiles. These variable mutations also influence the cross-reactivity of the antibody response mounted by individuals infected with each of these variants. This study sought to understand the antibody responses elicited by different SARS-CoV-2 variants and to define shared epitopes. We show that Beta and Delta infections resulted in antibody responses that were more cross-reactive than the original D614G variant, but they had differing patterns of cross-reactivity. We further isolated an antibody from Beta infection which targeted the N417 site, enabling cross-neutralization of Beta, Delta+, and Omicron, all of which possess this residue. The discovery of antibodies which target escape mutations common to multiple variants highlights conserved epitopes to target in future vaccines and therapeutics.


Subject(s)
Antibodies, Viral , Cross Reactions , Epitopes , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/virology , Cross Reactions/immunology , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Humans , Immune Evasion/immunology , Neutralization Tests , SARS-CoV-2/chemistry , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
15.
Molecules ; 27(12)2022 Jun 15.
Article in English | MEDLINE | ID: covidwho-1911483

ABSTRACT

We analyzed the epitope evolution of the spike protein in 1,860,489 SARS-CoV-2 genomes. The structural dynamics of these epitopes was determined by molecular modeling approaches. The D614G mutation, selected in the first months of the pandemic, is still present in currently circulating SARS-CoV-2 strains. This mutation facilitates the conformational change leading to the demasking of the ACE2 binding domain. D614G also abrogated the binding of facilitating antibodies to a linear epitope common to SARS-CoV-1 and SARS-CoV-2. The main neutralizing epitope of the N-terminal domain (NTD) of the spike protein showed extensive structural variability in SARS-CoV-2 variants, especially Delta and Omicron. This epitope is located on the flat surface of the NTD, a large electropositive area which binds to electronegatively charged lipid rafts of host cells. A facilitating epitope located on the lower part of the NTD appeared to be highly conserved among most SARS-CoV-2 variants, which may represent a risk of antibody-dependent enhancement (ADE). Overall, this retrospective analysis revealed an early divergence between conserved (facilitating) and variable (neutralizing) epitopes of the spike protein. These data aid in the designing of new antiviral strategies that could help to control COVID-19 infection by mimicking neutralizing antibodies or by blocking facilitating antibodies.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing/genetics , COVID-19/genetics , Epitopes/genetics , Humans , Retrospective Studies , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
16.
J Virol ; 96(14): e0048822, 2022 07 27.
Article in English | MEDLINE | ID: covidwho-1909580

ABSTRACT

Species A rotavirus (RVA) vaccines based on live attenuated viruses are used worldwide in humans. The recent establishment of a reverse genetics system for rotoviruses (RVs) has opened the possibility of engineering chimeric viruses expressing heterologous peptides from other viral or microbial species in order to develop polyvalent vaccines. We tested the feasibility of this concept by two approaches. First, we inserted short SARS-CoV-2 spike peptides into the hypervariable region of the simian RV SA11 strain viral protein (VP) 4. Second, we fused the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, or the shorter receptor binding motif (RBM) nested within the RBD, to the C terminus of nonstructural protein (NSP) 3 of the bovine RV RF strain, with or without an intervening Thosea asigna virus 2A (T2A) peptide. Mutating the hypervariable region of SA11 VP4 impeded viral replication, and for these mutants, no cross-reactivity with spike antibodies was detected. To rescue NSP3 mutants, we established a plasmid-based reverse genetics system for the bovine RV RF strain. Except for the RBD mutant that demonstrated a rescue defect, all NSP3 mutants delivered endpoint infectivity titers and exhibited replication kinetics comparable to that of the wild-type virus. In ELISAs, cell lysates of an NSP3 mutant expressing the RBD peptide showed cross-reactivity with a SARS-CoV-2 RBD antibody. 3D bovine gut enteroids were susceptible to infection by all NSP3 mutants, but cross-reactivity with SARS-CoV-2 RBD antibody was only detected for the RBM mutant. The tolerance of large SARS-CoV-2 peptide insertions at the C terminus of NSP3 in the presence of T2A element highlights the potential of this approach for the development of vaccine vectors targeting multiple enteric pathogens simultaneously. IMPORTANCE We explored the use of rotaviruses (RVs) to express heterologous peptides, using SARS-CoV-2 as an example. Small SARS-CoV-2 peptide insertions (<34 amino acids) into the hypervariable region of the viral protein 4 (VP4) of RV SA11 strain resulted in reduced viral titer and replication, demonstrating a limited tolerance for peptide insertions at this site. To test the RV RF strain for its tolerance for peptide insertions, we constructed a reverse genetics system. NSP3 was C-terminally tagged with SARS-CoV-2 spike peptides of up to 193 amino acids in length. With a T2A-separated 193 amino acid tag on NSP3, there was no significant effect on the viral rescue efficiency, endpoint titer, and replication kinetics. Tagged NSP3 elicited cross-reactivity with SARS-CoV-2 spike antibodies in ELISA. We highlight the potential for development of RV vaccine vectors targeting multiple enteric pathogens simultaneously.


Subject(s)
Reverse Genetics , Rotavirus , Spike Glycoprotein, Coronavirus , Vaccine Development , Amino Acids/metabolism , Animals , Antibodies, Viral/metabolism , COVID-19/virology , Epitopes/genetics , Epitopes/metabolism , Humans , Microorganisms, Genetically-Modified , Rotavirus/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccine Development/methods
17.
Nat Commun ; 13(1): 3375, 2022 06 13.
Article in English | MEDLINE | ID: covidwho-1890184

ABSTRACT

SARS-CoV-2 vaccines, administered to billions of people worldwide, mitigate the effects of the COVID-19 pandemic, however little is known about the molecular basis of antibody cross-protection to emerging variants, such as Omicron BA.1, its sublineage BA.2, and other coronaviruses. To answer this question, 276 neutralizing monoclonal antibodies (nAbs), previously isolated from seronegative and seropositive donors vaccinated with BNT162b2 mRNA vaccine, were tested for neutralization against the Omicron BA.1 and BA.2 variants, and SARS-CoV-1 virus. Only 14.2, 19.9 and 4.0% of tested antibodies neutralize BA.1, BA.2, and SARS-CoV-1 respectively. These nAbs recognize mainly the SARS-CoV-2 receptor binding domain (RBD) and target Class 3 and Class 4 epitope regions on the SARS-CoV-2 spike protein. Interestingly, around 50% of BA.2 nAbs did not neutralize BA.1 and among these, several targeted the NTD. Cross-protective antibodies derive from a variety of germlines, the most frequents of which were the IGHV1-58;IGHJ3-1, IGHV2-5;IGHJ4-1 and IGHV1-69;IGHV4-1. Only 15.6, 20.3 and 7.8% of predominant gene-derived nAbs elicited against the original Wuhan virus cross-neutralize Omicron BA.1, BA.2 and SARS-CoV-1 respectively. Our data provide evidence, at molecular level, of the presence of cross-neutralizing antibodies induced by vaccination and map conserved epitopes on the S protein that can inform vaccine design.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Epitopes/genetics , Humans , Neutralization Tests , Pandemics/prevention & control , RNA, Messenger/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Synthetic , mRNA Vaccines
18.
Viruses ; 14(6)2022 05 26.
Article in English | MEDLINE | ID: covidwho-1869814

ABSTRACT

In silico methods for immune epitope prediction have become essential for vaccine and therapeutic design, but manual intra-species comparison of putative epitopes remains challenging and subject to human error. Created initially for analyzing SARS-CoV-2 variants of concern, comparative analysis of variant epitope sequences (CAVES) is a novel tool designed to carry out rapid comparative analyses of epitopes amongst closely related pathogens, substantially reducing the required time and user workload. CAVES applies a two-level analysis approach. The Level-one (L1) analysis compares two epitope prediction files, and the Level-two (L2) analysis incorporates search results from the IEDB database of experimentally confirmed epitopes. Both L1 and L2 analyses sort epitopes into categories of exact matches, partial matches, or novel epitopes based on the degree to which they match with peptides from the compared file. Furthermore, CAVES uses positional sequence data to improve its accuracy and speed, taking only a fraction of the time required by manual analyses and minimizing human error. CAVES is widely applicable for evolutionary analyses and antigenic comparisons of any closely related pathogen species. CAVES is open-source software that runs through a graphical user interface on Windows operating systems, making it widely accessible regardless of coding expertise. The CAVES source code and test dataset presented here are publicly available on the CAVES GitHub page.


Subject(s)
COVID-19 , SARS-CoV-2 , Computational Biology/methods , Epitopes/genetics , Epitopes, T-Lymphocyte , Humans , SARS-CoV-2/genetics , Software
19.
PLoS Comput Biol ; 18(2): e1009726, 2022 02.
Article in English | MEDLINE | ID: covidwho-1753172

ABSTRACT

The massive assessment of immune evasion due to viral mutations that increase COVID-19 susceptibility can be computationally facilitated. The adaptive cytotoxic T response is critical during primary infection and the generation of long-term protection. Here, potential HLA class I epitopes in the SARS-CoV-2 proteome were predicted for 2,915 human alleles of 71 families using the netMHCIpan EL algorithm. Allele families showed extreme epitopic differences, underscoring genetic variability of protective capacity between humans. Up to 1,222 epitopes were associated with any of the twelve supertypes, that is, allele clusters covering 90% population. Next, from all mutations identified in ~118,000 viral NCBI isolates, those causing significant epitope score reduction were considered epitope escape mutations. These mutations mainly involved non-conservative substitutions at the second and C-terminal position of the ligand core, or total ligand removal by large recurrent deletions. Escape mutations affected 47% of supertype epitopes, which in 21% of cases concerned isolates from two or more sub-continental areas. Some of these changes were coupled, but never surpassed 15% of evaded epitopes for the same supertype in the same isolate, except for B27. In contrast to most supertypes, eight allele families mostly contained alleles with few SARS-CoV-2 ligands. Isolates harboring cytotoxic escape mutations for these families co-existed geographically within sub-Saharan and Asian populations enriched in these alleles according to the Allele Frequency Net Database. Collectively, our findings indicate that escape mutation events have already occurred for half of HLA class I supertype epitopes. However, it is presently unlikely that, overall, it poses a threat to the global population. In contrast, single and double mutations for susceptible alleles may be associated with viral selective pressure and alarming local outbreaks. The integration of genomic, geographical and immunoinformatic information eases the surveillance of variants potentially affecting the global population, as well as minority subpopulations.


Subject(s)
COVID-19 , Genome, Viral , Immune Evasion , Mutation , SARS-CoV-2 , COVID-19/immunology , COVID-19/virology , Epitopes/genetics , Epitopes/immunology , Gene Frequency , Genome, Viral/genetics , Genome, Viral/immunology , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Mutation/genetics , Mutation/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Viral Proteins/genetics , Viral Proteins/immunology
20.
J Virol ; 96(4): e0195521, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1701123

ABSTRACT

The receptor binding domain (RBD) of the coronavirus spike protein (S) has been verified to be the main target for potent neutralizing antibodies (nAbs) in most coronaviruses, and the N-terminal domain (NTD) of some betacoronaviruses has also been indicated to induce nAbs. For alphacoronavirus HCoV-229E, its RBD has been shown to have neutralizing epitopes, and these epitopes could change over time. However, whether neutralizing epitopes exist on the NTD and whether these epitopes change like those of the RBD are still unknown. Here, we verified that neutralizing epitopes exist on the NTD of HCoV-229E. Furthermore, we characterized an NTD targeting nAb 5H10, which could neutralize both pseudotyped and authentic HCoV-229E VR740 in vitro. Epitope mapping indicated that 5H10 targeted motif E1 (147-167 aa) and identified F159 as critical for 5H10 binding. More importantly, our results revealed that motif E1 was highly conserved among clinical isolates except for F159. Further data proved that mutations at position 159 gradually appeared over time and could completely abolish the neutralizing ability of 5H10, supporting the notion that position 159 may be under selective pressure during the human epidemic. In addition, we also found that contemporary clinical serum has a stronger binding capacity for the NTD of contemporary strains than historic strains, proving that the epitope on the NTD could change over time. In summary, these findings define a novel neutralizing epitope on the NTD of HCoV-229E S and provide a theoretical basis for the design of vaccines against HCoV-229E or related coronaviruses. IMPORTANCE Characterization of the neutralizing epitope of the spike (S) protein, the major invasion protein of coronaviruses, can help us better understand the evolutionary characteristics of these viruses and promote vaccine development. To date, the neutralizing epitope distribution of alphacoronaviruses is not well known. Here, we identified a neutralizing antibody that targeted the N-terminal domain (NTD) of the alphacoronavirus HCoV-229E S protein. Epitope mapping revealed a novel epitope that was not previously discovered in HCoV-229E. Further studies identified an important residue, F159. Mutations that gradually appeared over time at this site abolished the neutralizing ability of 5H10, indicating that selective pressure occurred at this position in the spread of HCoV-229E. Furthermore, we found that the epitopes within the NTD also changed over time. Taken together, our findings defined a novel neutralizing epitope and highlighted the role of the NTD in the future prevention and control of HCoV-229E or related coronaviruses.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Coronavirus 229E, Human , Coronavirus Infections , Epitopes , Spike Glycoprotein, Coronavirus , Amino Acid Motifs , Animals , Coronavirus 229E, Human/genetics , Coronavirus 229E, Human/immunology , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Epitopes/genetics , Epitopes/immunology , Female , Humans , Mice , Mice, Inbred BALB C , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL